24 January 2025, Quantum Software Day, University of Helsinki, Helsinki, Finland

QUANSCIENT

Physics simulations with quantum computers

Quantum-native multiphysics

Agenda

1.

Quanscient Overview

2.

Quantum algorithms for multiphysics

3.

Quantum-native algorithms

4.

Final notes and conclusions

About Quanscient

Founded

2021

Funding raised

10M+

Different nationalities

15

Companies using the product

+100

Employees

~40

Trusted in both industry and academia

We have partnered with the key companies in cloud & quantum

- Our infrastructure is built on AWS.
- We are engaged in technical partnership discussions and exploring co-selling opportunities.

intel.

- They have released a small quantum chip. We have been running things on their simulator through Intel Quantum SDK.
- Possibility to access the chip.
- Important for PR value.

- We are in their Quantum Startup Ecosystem.
- We are eligible for \$120k credits to their devices through their Hyper Protect program.

- We are in the NVIDIA Inception program.
- GPU credits for running their quantum simulator.
- Collaboration with NVIDIA Modulus Physics informed ML.

Many other quantum HW manufacturer partnerships:

Quanscient Allsolve reduces time, costs and risks for R&D with cloud & quantum powered simulations

WHAT IS POSSIBLE ALREADY?

> 1000x speedups

Increase complexity and runtime from days to coffee breaks.

Enable automated workflows

Workflows with APIs to automate simulation processes and connect to AI similar to NVidia Modulus.

More experiments, less prototypes

Optimization tasks, Monte Carlo simulations, and ML based surrogate models.

IN THE FUTURE

Make the impossible possible with Quantum

Exponential speedups with quantum advantage make the impossible possible in simulations.

Quantum-native multiphysics algorithms Quanscient Quantum Labs' quantum-native® approach

Quantum algorithms for multiphysics

Quantum-native lattice-based physics simulations

Exponential problem size, logarithmic scaling.

Validated against classical counterparts & analytical solutions.

Quantum Lattice-Boltzmann

Evolution of mesoscopic probability distributions of particles on a lattice

Macroscopically generates PDE solutions

Each step is solved efficiently on a quantum computer

Already demonstrated accurate results in 1D and 2D on real hardware

Quantum Lattice-Gas Automata

Evolution of particles on a lattice

Simple collision and propagation of microscopic particles → Nonlinear macroscopic phenomena

Noise-resilience: statistical averaging can mitigate noise

PoCs by Quansient Quantum Labs Concrete use cases & industry projects

D1Q3 HPP Quantum Lattice Gas Automaton

Rate	е

Noise Level	Single Qubit Error Rate	2-Qubit Error Rate	Readout Error Rate
Low	10^{-5}	10^{-4}	10^{-4}
Mid (similar to Quantinuum H2)	3×10^{-5}	2×10^{-3}	2×10^{-3}
High (similar to early IBM devices)	6×10^{-3}	2×10^{-2}	2×10^{-2}

QLGA with different noise levels. The number of shots used appears in parentheses

QUANSCIENT

Quantum LBM Benchmark

Motion of 1D and 2D Gaussian hills

Validation against classical simulation and analytical solution

Spread of aerosols benchmark

Simulations on CSC Lumi validated in collaboration with VTT Technical Research Centre of Finland

Quanscient QLBM + Haiqu middleware

Advection diffusion equation simulated on lonQ Aria

- → First end-to-end execution of multiple 2D QLBM steps on quantum hardware
- → This underscores the potential of quantum computing to address realistic CFD applications
- → Emphasis on improving higher-level algorithms and practical quantum middleware engineering

QUANSCIENT

12 qubits, 256 lattice sites

16 qubits, 4096 lattice sites

Airfoil flow + temperature simulations with QLBM

Several LBM equations solved in superposition

- → Flow coupled with the transport of a constituent with minimal extra computational cost. Flow around an airfoil with transport of temperature field.
- → This simulation consists of three coupled Lattice-Boltzmann equations in superposition.
- → Validated against classical simulation.
- \rightarrow 23 qubits, 66000 lattice points

Partnership between Quanscient, Airbus & Oxford Ionics

- Using mid-circuit measurements to run CFD simulations from start to end entirely on a quantum computer
- Research the implementation on ion-trap hardware
- Quantum CFD use case input from Airbus

Oxford Ionics And Quanscient Partner With Airbus To Develop Quantum Computing Applications For Fluid Dynamics Modeling

Quantum Computing Business

Matt Swayne • December 6, 2024

The Quantum Insider:

https://thequantuminsider.com/2024/12/06/oxford-ionics-and-quanscient-partner-with-airbus-to-develop-quantum-computing-applications-for-fluid-dynamics-modeling/

Our quantum roadmap

Prototype QLBM solvers running on a quantum simulator

Fall 2022

Concrete evidence for quantum-native macro-scale physics simulations on a NISQ device

2023-2024

Extending to 2D and 3D simulations on a real quantum computer, expanding to more physics: acoustics, electromagnetism, elastodynamics, and more. Quantum LBM Product PoC

This and the next few years

Simulations on a scale infeasible to do on classical hardware. **Product integration.**

TBA

Full exponential benefits of our quantum product.

Key takeaways

QUANSCIENT

1.

Quanscient Allsolve: fast, accurate, and scalable multiphysics simulations on the cloud. 2.

Quantum-native algorithms for CFD & multiphysics.

3.

Gearing up for quantum advantage. Willing to collaborate!

Thank you!

QUANSCIENT

Get in touch to learn more!

Dr. Valtteri Lahtinen

+358 40 839 7887

valtteri.lahtinen@quanscient.com

Try our Quantum Demo!

https://quantum-demo. quanscient.com

Book a demo meeting!

https://quanscient.com/allsolve#book-a-demo

