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Abstract

Accurate material characterization is
fundamental to achieving reliable
computational simulations, particularly in
systems involving composite or anisotropic
materials. Traditional experimental methods for
material property estimation are often time-
consuming, costly, and limited in scope. As
engineering applications grow increasingly
complex, there is a growing demand for more
efficient and accurate alternatives. Inverse
problems provide a powerful framework for
estimating unknown material properties by
minimizing discrepancies between simulated
and experimental data. This approach shifts the
focus from direct measurement to iterative
optimization using computational models. 

This paper presents a methodology for
estimating material properties through inverse
simulations using Quanscient Allsolve, a cloud-
native, multiphysics simulation platform. The
study focuses on a practical case involving a
JEDEC-standard printed circuit board (PCB), in
which an API-driven optimization loop is
employed to minimize the residual error in
eigenfrequency predictions.

The workflow integrates finite element analysis
(FEA) with gradient-based optimization
techniques from SciPy, achieving material
properties that closely match those reported in
the literature. 

The results demonstrate a high degree of
correlation between simulated and
experimental data, validating the proposed
methodology and highlighting the
computational efficiency afforded by cloud-
native parallelization. 

This paper underscores the relevance of
inverse simulation techniques for material
characterization and illustrates the potential of
automated, cloud-based workflows in
engineering simulations.

Keywords —  Inverse problem; material
property estimation; Finite Element Method
(FEM); cloud computing; PCB simulation;
multiphysics modeling; automated
optimization
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Introduction to Quanscient Allsolve

Quanscient Allsolve 

A cloud-based FEM multiphysics simulation platform

Developed by Quanscient, a company established in 2021 in Tampere, Finland

Built upon the open-source solver Sparselizard developed by our CTO, Dr. Alexandre Halbach
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Trusted in both industry and academia

The cloud-based multiphysics simulation platform Quanscient Allsolve was used for all simulations
featured in these case studies.

Learn more at quanscient.com

https://eu1.hubs.ly/H0gXBym0
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Introduction to inverse problems for
material property optimization
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Experimental Constraints: The need for controlled
environments, specialized equipment, and multiple
iterations makes experimental characterization
laborious.

Resource Demands: Physical testing consumes
significant time and financial resources, especially in
prototyping stages.

Complexity of Material Behavior: Materials such as
composites exhibit directionally dependent
properties that are not easily captured using
standard characterization techniques.

To address the limitations of conventional
experimental approaches, inverse problem-solving
presents a viable computational alternative. In this
context, the estimation of material properties is
formulated as an optimization problem wherein
simulation outputs are compared to experimental
data, and material parameters are adjusted
iteratively to minimize the discrepancy. 

Quanscient Allsolve, with its automated, API-driven
workflow and cloud-based architecture, provides
an ideal environment for implementing such a
methodology. 

The objective of the simulation presented herein is
to demonstrate the feasibility and accuracy of this
approach using a packaged PCB model subjected to
modal analysis.

The mechanical behavior and reliability of systems
such as printed circuit boards (PCBs) are heavily
influenced by the properties of their constituent
materials. Characterizing these materials is essential
for constructing accurate computational models,
particularly when using finite element analysis (FEA)
to simulate mechanical or vibrational responses. 

Traditional experimental methods, while effective,
are resource-intensive and frequently impractical for
high-throughput or early-stage design applications.
As a result, computational methods for estimating
material properties have gained prominence. These
methods are especially useful in systems composed
of complex, layered, or anisotropic materials where
direct measurement is challenging.

Challenges about estimation of
material properties
 

Motivation for simulation

https://eu1.hubs.ly/H0gXBym0


Material property optimization
Methods and models
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The study employs an inverse simulation approach
to estimate unknown material properties through
iterative optimization. The methodology involves
defining initial material parameters, performing
eigenmode analyses, and minimizing the residual
error between simulated and experimental
eigenfrequencies.

The following procedural components were
employed:

Finite Element Modeling: The PCB was modeled as
an anisotropic material characterized by three
independent elastic constants. The mounted
packages were modeled as isotropic materials.

Optimization Framework: A gradient-based
optimization algorithm from the SciPy library was
used to iteratively refine the material parameters.

Simulation methodology

Simulation workflow

The simulation began by defining initial material
properties for the PCB and package structures.
Using Quanscient Allsolve, an eigenmode analysis
was performed to determine the system's natural
frequencies. The simulated eigenfrequencies were
then compared to experimentally obtained values,
and the residual error was calculated. This residual
served as the input for updating the material
parameters through a gradient-based optimization
algorithm. The process was repeated in an iterative
loop until the convergence criteria were satisfied.

Fig.1: CAD model of the standard packaged PCB.

https://eu1.hubs.ly/H0gXBym0
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The test case involved a JEDEC-standard drop test
PCB with dimensions of 132×77×1 mm³. The board
included a 3×5 full array of 13×13 mm packages. The
goal was to estimate the equivalent material
properties of the PCB and its mounted components
by minimizing the discrepancy between simulated
and experimental eigenfrequencies.

The simulation was designed to estimate the
unknown material properties of the PCB and the
mounted packages with sufficient accuracy to align
simulation results with experimental modal data. To
achieve this, an iterative optimization approach was
used to minimize discrepancies between simulated
and measured eigenfrequencies.

This optimization process was automated using
Quanscient Allsolve's API, allowing for efficient
integration with external libraries and minimizing the
need for manual adjustments. The API-based
workflow ensured repeatability and scalability
throughout the process.

he workflow comprised several sequential steps
designed to iteratively minimize the discrepancy
between simulation and experimental results. Initially,
material parameters for the PCB and package
structures were defined based on approximate or
literature-based values. These parameters were then
used to set up and execute an eigenmode analysis
using Quanscient Allsolve, which calculated the
system’s natural frequencies.

Following each simulation, the resulting
eigenfrequencies were compared against
corresponding experimental data to evaluate the
accuracy of the current material model. The
discrepancy, or residual error, between the two
datasets was computed and used to inform the
update of material parameters. This process
(simulation, comparison, residual calculation, and
parameter update) was repeated in an automated
loop using a gradient-based optimization algorithm
until convergence criteria were met. The
automation and cloud-native nature of the platform
significantly accelerated the process and ensured
consistency across iterations.

Simulation setup

Fig. 2: API optimization workflow.

Material property optimization
Methods and models
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The optimized material properties were in close
agreement with values reported by Lee et al. [2],
with minor deviations attributed to modeling
simplifications, such as the exclusion of the
accelerometer mass.

Accuracy of Estimation

Fig. 3: Iterations of the material properties.

The optimization routine converged after 85 iterations, resulting in a 5.7% relative residual error. This
outcome indicates a high degree of fidelity between the simulated and experimental
eigenfrequencies.

Reduction in Manual Effort

The API-driven workflow enabled automation of the
entire optimization process, reducing manual
intervention and ensuring consistency.

Table 1: Comparison between initial and optimized material properties.

Material property optimization
Results and discussion
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Simulated eigenfrequencies were found to be within
±16% of experimental measurements. Mode shapes
were qualitatively consistent with both experimental
data and previously published finite element analysis
results.

Validation of Simulation Results

Fig. 6: Error relative to experimental values of eigenfrequencies.

Fig. 5: Comparison of predicted eigenfrequencies with
experimental measurements.

Modelling Assumptions

Discrepancies in mode shapes and eigenfrequencies
were primarily due to simplifications such as the use
of gradient-based optimization (prone to local
minima) and omission of certain physical elements in
the simulation model.

Fig. 4: Comparison of selected modes with experimental modal
analysis and finite element analysis from Lee et al. [2]. The
deviations in mode shapes are attributed to neglecting
accelerometer mass and use of simple gradient-based optimization,
leading to a local optimum rather than a global one.

Material property optimization
Results and discussion
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The methodology presented in this study demonstrates the utility of inverse simulation
techniques for estimating material properties in composite systems. These techniques
offer an efficient alternative to experimental approaches, particularly when dealing with
complex, layered, or anisotropic materials where direct characterization is difficult or
infeasible.

Quanscient Allsolve, with its cloud-native infrastructure and API-first architecture,
provides a powerful platform for deploying such inverse modeling workflows. Its parallel
computing capabilities and integration with optimization libraries enable the automation of
time-consuming processes, leading to faster iterations and higher consistency in
simulation outcomes.

The case study involving a packaged PCB serves as a proof-of-concept for broader
engineering applications. By integrating cloud computing with automated optimization, the
approach showcased in this study represents a meaningful advancement in simulation-
driven design and analysis, offering increased accuracy and significant time savings.
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Inverse problems help estimate material
properties by minimizing the difference
between simulations and experimental
data

With an API-driven workflow, Quanscient
Allsolve automates this process, reducing
manual work and speeding up optimization

Quanscient Allsolve runs simulations in the
cloud with parallel computing, significantly
reducing processing time

The optimized material properties closely
matched experimental data, improving
simulation reliability in this case example

Printed circuit boards (PCBs) are one
example where this approach might be
useful, but the method itself is very
general and can be applied to other
complex material systems

Learn more and request a demo at
quanscient.com
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